If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2=3X+14
We move all terms to the left:
X^2-(3X+14)=0
We get rid of parentheses
X^2-3X-14=0
a = 1; b = -3; c = -14;
Δ = b2-4ac
Δ = -32-4·1·(-14)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{65}}{2*1}=\frac{3-\sqrt{65}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{65}}{2*1}=\frac{3+\sqrt{65}}{2} $
| 3x+(×+6)=-24-2x | | 3p^2+7p=-6 | | V+6=-1+2v | | 24-1/2x=1/3x | | X^213x=10 | | 5x4+12=x−12 | | v+6=-1+2 | | 15z-23-5z=81÷9⋅3-30 | | (19x-3)/3=18 | | 7+6v=1+5v | | 7/8-1/3t=4/5 | | 6×6=4n | | 48=x+(4x-7) | | 1/2(4x-6=11 | | (3x+1)/(9x-2)=0 | | 0.75g=−12 | | 7/6-2/5t=6/7 | | 15z-23-5z=81/9•3-30 | | 2-(19+a)=3-11a | | -12x^2+1560x-43200=0 | | 3(x-5)+9x=-3 | | 3(x+5)^5=150 | | −6p=48 | | 3x^2=30x-9 | | 18-y=-11 | | X+40+x+80+x=180 | | 15z-23-5z=81/9*3-30 | | 4(9x+3x)-12=-6 | | 5y-y+9=0 | | 26=30-6(5-a) | | Y=8+6x+x^2 | | 11p-12-10p-11=15 |